510
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold

, , , , , & show all
Pages 600-611 | Received 12 Dec 2011, Accepted 27 Jan 2012, Published online: 21 Feb 2012
 

Abstract

A novel mitochondria-targeted antioxidant (TPP-OH) was synthesized by attaching the natural hydrophilic antioxidant caffeic acid to an aliphatic lipophilic carbon chain containing a triphenylphosphonium (TPP) cation. This compound has similar antioxidant activity to caffeic acid as demonstrated by measurement of DPPH/ABTS radical quenching and redox potentials, but is significantly more hydrophobic than its precursor as indicated by the relative partition coefficients. The antioxidant activity of both compounds was intrinsic related to the ortho-catechol system, as the methoxylation of the phenolic functions, namely in TPP-OCH3 and dimethoxycinnamic acid, gave compounds with negligible antioxidant action. The incorporation of the lipophilic TPP cation to form TTP-OH and TPP-OCH3 allowed the cinnamic derivatives to accumulate within mitochondria in a process driven by the membrane potential. However, only TPP-OH was an effective antioxidant: TPP-OH protected cells against H2O2 and linoleic acid hydroperoxide-induced oxidative stress. As mitochondrial oxidative damage is associated with a number of clinical disorders, TPP-OH may be a useful lead that could be added to the family of mitochondria-targeted antioxidants that can decrease mitochondrial oxidative damage.

This paper was first published online on Early Online on 22 February 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.