492
Views
71
CrossRef citations to date
0
Altmetric
Research Article

NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress

, , , &
Pages 282-291 | Received 27 Sep 2013, Accepted 08 Nov 2013, Published online: 10 Dec 2013
 

Abstract

Oxidative stress, defined as an excess production of reactive oxygen species (ROS), is shown to play an important role in the pathophysiology of cardiac remodeling including cell death and contractile dysfunction. Therefore, the balance between ROS production and removal of excess ROS is essential in maintaining the redox state and homeostasis balance in the cell. The increased ROS further activates nuclear factor-κB (NF-κB), a redox-sensitive transcription factor and promotes cell death. Recently, microRNAs (miRNAs) have been identified as critical regulators of various pathophysiological processes of cardiac remodeling; however, NF-κB-mediated miRNA's role in cardiomyocytes under oxidative stress remains undetermined. The miR-21 has been implicated in diverse cardiac remodeling; but, NF-κB-mediated miR-21 modulation in oxidative stress is currently unknown. Neonatal cardiomyocytes were transfected with IκBα mutant, miR-21 mimetic, and inhibitors separately, and were challenged with H2O2. The target gene, programmed cell death 4 (PDCD4), ROS activity, and NF-κB translocation were analyzed. Our results indicated that NF-κB positively regulated miR-21 expression under oxidative stress, and PDCD4 was a direct target for miR-21. NF-κB further regulated the expression of PDCD4 in H2O2-induced oxidative stress. Moreover, H2O2-induced ROS activity and cardiomyocytes apoptosis were partly protected by overexpression of miR-21 and displayed an important role in ROS-mediated cardiomyocytes injury. We evaluated a critical role of NF-κB-mediated miR-21 modulation in H2O2-induced oxidative stress in cardiomyocytes by targeting PDCD4. Our data may provide a new insight of miR-21's role in cardiac diseases primarily mediated by ROS.

Acknowledgments

The authors acknowledge to Central Texas Veterans Affairs Health Care System for providing research facility to complete this work.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This study was partly supported by start-up funds from the Texas A & M Health Science Center, College of Medicine, by an American Heart Association-National Scientist Development Grant (0835227N) to S. Gupta (SG).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.