682
Views
29
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

N-acetyl cysteine reduces oxidative toxicity, apoptosis, and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome

&
Pages 338-346 | Received 22 Oct 2014, Accepted 07 Jan 2015, Published online: 09 Feb 2015
 

Abstract

Polycystic ovary syndrome (PCOS) is a common inflammatory and oxidant disease with an uncertain pathogenesis. N-acetyl cysteine (NAC) decreases oxidative stress, intracellular free calcium ion [Ca2+]i, and apoptosis levels in human neutrophil. We aimed to investigate the effects of NAC on apoptosis, oxidative stress, and Ca2+ entry through transient receptor potential vanilloid 1 (TRPV1) and TRP melastatin 2 (TRPM2) channels in neutrophils from patients with PCOS. Neutrophils isolated from PCOS group were investigated in three settings: (1) after incubation with TRPV1 channel blocker capsazepine or TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB), (2) after supplementation with NAC (for 6 weeks), and (3) with combination (capsazepine + 2-APB + NAC) exposure. The neutrophils in TRPM2 and TRPV1 experiments were stimulated by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 1 μM) and capsaicin (10 μM) as concentration agonists, respectively. Neutrophil lipid peroxidation and capsaicin-induced increase in [Ca2+]i concentrations were reduced by capsazepine and NAC treatments. However, the [Ca2+]i concentration did not change by fMLP stimulation. Neutrophil lipid peroxidation, apoptosis, caspase-3, caspase-9, cytosolic reactive oxygen species production, and mitochondrial membrane depolarization values were decreased by NAC treatment although neutrophil glutathione peroxidase and reduced glutathione levels were increased by the NAC treatment. Serum lipid peroxidation, luteinizing hormone, testosterone, insulin, interleukin-1 beta, and homocysteine levels were decreased by NAC treatment although serum vitamin A, beta-carotene, vitamin E, and total antioxidant status were increased by the NAC treatment. In conclusion, NAC reduced oxidative stress, apoptosis, cytokine levels, and Ca2+ entry through TRPV1 channel, which provide supportive evidence that oxidative stress and TRPV1 channel plays a key role in etiology of PCOS.

Acknowledgments

MN formulated the present hypothesis and was responsible for writing the report. SAK was responsible patient management and blood collection. The authors wish to thank Bilal Çiğ, İshak Suat Övey, and Ahmi Öz (Ph.D. students in Department of Biophysics and Neuroscience) for helping in analyses of the data.

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.