12
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Free Radicals and Lipid Peroxidation in Liver of Rats Kept on a Diet Devoid of Choline

, , , , , & show all
Pages 233-240 | Published online: 07 Jul 2009
 

Abstract

Rodents kept on a choline devoid (CD) diet up to 14 months develop hepatic lesions progressing through two broad stages. The first is chracterized by severe steatosis and increase in cell turnover, the second by a gradual clearance of the deposited fat and fibrosis. Hepatocellular carcinomas eventually arise in rats fed for over 12 months, even though the animals aer not exposed to chemical carcinogens. It has been suggested that the diet may trigger generated thereby may be responsible for intiation of liver cancer and promotion. The radicals would lead to DNA damage, and the altered DNA in a proliferating liver would result in initiation of the carcinogenic process. In this communication we present evidence that the diet used in the above studies contained stable fatty acid isomers with conjugated dienes, which are absorbed and deposited in rat liver. This finding cast doubts on whether a CD diet does indeed cause a peroxidation of cellular membrane lipids. Electron spin resonance (ESR) spectroscopy was also used to investigate whether any abnormal pattern of free radicals exists in the liver of rats fed a CD diet. No significant differences were noted in ESR spectra of either transition metal-centered signals, or organic free radicals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.