40
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Free Radical Formation by Ultrasound in Aqueous Solutions. A Spin Trapping Study

, &
Pages 27-35 | Published online: 07 Jul 2009
 

Abstract

Our recent spin trapping studies of free radical generation by ultrasound in aqueous solutions are reviewed. The very high temperatures and pressures induced by acoustic cavitation in collapsing gas bubbles in aqueous solutions exposed to ultrasound lead to the thermal dissociation of water vapor into H atoms and OH radicals. Their formation has been confirmed by spin trapping. Sonochemical reactions occur in the gas phase (pyrolysis reactions), in the gas-liquid interfacial region, and in the bulk of the solution (radiation-chemistry reactions). The high temperature gradients in the interfacial regions lead to pyrolysis products from non-volatile solutes present at sufficiently high concentrations. The sonochemically generated radicals from carboxylic acids, amino acids, dipeptides. sugars, pyrimidine bases. nucleosides and nucleo-tides were identified by spin trapping with the non-volatile spin trap 3.5-dibromo-2.6-dideuterio-4-nitrosobenzenesulfonate. At low concentrations of the non-volatile solutes. the spin-trapped radicals produced by sonolysis are due to H atom and OH radical reactions. At higher concentrations of these non-volatile solutes, sonolysis leads to the formation of additional radicals due to pyrolysis processes (typically methyl radicals). A preferred localization of non-volatile surfactants (compared to analogous non-surfactant solutes) was demonstrated by the detection of pyrolysis radicals at 500-fold lower concentrations. Pyrolysis radicals were also found in the sonolysis of aqueous solutions containing only certain nitrone spin traps. The more hydrophobic the spin trap, the lower the concentration at which the pyrolysis radicals can be observed. The effect of varying the temperature of collapsing transient cavities in aqueous solutions of different rare gases and of N2O on radical yields and on cell lysis of mammalian cells was investigated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.