10
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Effects of Superoxide on Nitric Oxide-Dependent N-Nitrosation Reactions

, , , , , & show all
Pages 379-390 | Received 18 Dec 1994, Published online: 07 Jul 2009
 

Abstract

Recent studies have demonstrated that nitric oxide (NO) in the presence of superoxide (O2) may mediate mutagenesis via the N-nitrosation of DNA bases followed by nitrosative deamination to yield their hydroxylated derivatives. We have found that phorbol myristate acetate (PMA)-activated extravasated rat neutrophils (PMNs) will N-nitrosate 2,3-diaminonaphthalene (DAN) to yield its highly fluorescent nitrosation product 2,3- naphthotriazole (triazole) via the L-arginine dependent formation of NO. Addition of SOD enhanced triazole formation suggesting that O2 production may inhibit the N-nitrosating activity and thus the mutagenic activity of inflammatory PMNs. The objective of this study was to assess the role of superoxide as a modulator of NO-dependent N-nitrosation reactions using PM A-activated PMNs as well as a chemically defined-system that generates both NO and superoxide. We found that PMA-activation of PMNs reduced the amount of N-nitrosation of DAN by approximately 64% when compared to non- stimulated cells (450 vs. 1250 nM). Addition of SOD but not inactivated SOD or catalase to PMA-activated PMNs enhanced the formation of triazole by approximately 4-fold (1950 nM). In addition, we found that the NO-releasing spermine/NO adduct (Sp/NO; 50μM) which produces approximately 1.0 nmol NO/min generated approximately 8000 nM of triazole whereas the combination of Sp/NO and a superoxide generator (hypoxanthine/xanthine oxidase) that produces approximately 1.0 nmol O2/min reduced triazole formation by 90% (790 nM). Addition of SOD but not catalase restored the N-nitrosating activity. We conclude that equimolar fluxes of superoxide react rapidly with NO to generate products that have only limited ability to N-nitrosate aromatic amino compounds and thus may have limited ability to promote mutagenesis via the nitrosative deamination of DNA bases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.