2,171
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma

, &
Pages 199-205 | Received 14 Nov 2013, Accepted 16 Dec 2013, Published online: 27 Jan 2014
 

Abstract

Lung cancer is a dreadful disease which claims to be more life threatening as compared to total sum up of colon, prostate and breast cancers. Thus, there is an urgent need to develop an effective delivery approach for its management. Paclitaxel (PTX) is one of the well-known choice as antineoplasitic agent used for the treatment of different types of human cancers such as non-small-cell lung, head and neck cancers, leukemia, breast, ovarian and melanoma. Lactoferrin (Lf), a “multifunctional protein” is crucial for natural immunity which is secreted by exocrine glands. Lf receptors are expressed on the apical surface on bronchial epithelial cells. These over-expressed LF receptors can be utilized for the transportation of Lf-conjugated drug or nanocarrier devices. The present study was aimed to develop PTX-loaded Lf-coupled solid lipid nanoparticles (SLNs) for the treatment of lung cancer. PTX-loaded SLNs were prepared, characterized and then coupled with Lf using carbodiimide chemistry. The formulations were characterized by transmission electron microscopy, particle size, polydispersity index and zeta potential, whereas Lf conjugation was confirmed by FT-IR and 1H NMR and efficiency of prepared system was evaluated by in vitro, ex vivo and in vivo evaluations. The ex vivo cytotoxicity studies on human bronchial epithelial cell lines, BEAS-2B, revealed superior anticancer activity of Lf-coupled SLNs than plain SLNs and free PTX. In vivo biodistribution studies showed higher concentrations of PTX accumulated in lungs via Lf-coupled SLNs than plain SLNs and free PTX. These studies suggested that Lf-coupled PTX-loaded SLNs could be used as potential targeting carrier for delivering anticancer drug to the lungs with the minimal side effects.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.