10,732
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride

&
Pages 2796-2805 | Received 03 Jul 2015, Accepted 31 Aug 2015, Published online: 22 Sep 2015
 

Abstract

Context: Metformin hydrochloride is a biguanide derivative widely used for the treatment of type 2 diabetes, prescribed nearly to 120 million people worldwide. Metformin has a relatively low oral bioavailability (about 50–60%). Although the major effect of metformin is to decrease hepatic glucose output as an antihyperglycemic agent, its inhibitory effects on the proliferation of some cancer cells (e.g. prostate, breast, glioma cells) have been demonstrated in the cell culture studies. Development of novel formulation (e.g. microparticles, nanoparticles) strategies for metformin might be useful to improve its bioavailability, to reduce the dosing frequency, to decrease gastrointestinal side effects and toxicity and to be helpful for effective use of metformin in cancer treatment.

Objective: The main aim of this review is to summarize metformin HCl-loaded micro- and nanoparticulate drug delivery systems.

Method: The literature was rewieved with regard to the physicochemical, pharmacological properties of metformin, and also its mechanism of action in type 2 diabetes and cancer. In addition, micro- and nanoparticulate drug delivery systems developed for metformin were gathered from the literature and the results were discussed.

Conclusion: Metformin is an oral antihyperglycemic agent and also has potential antitumorigenic effects. The repeated applications of high doses of metformin (as immediate release formulations) are needed for an effective treatment due to its low oral bioavailability and short biological half-life. Drug delivery systems are very useful systems to overcome the difficulties associated with conventional dosage forms of metformin and also for its effective use in cancer treatment.

Declaration of interest

The authors declare no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.