1,079
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of a novel PEGDGA-coated hPAMAM complex as an efficient and biocompatible gene delivery vector: an in vitro and in vivo study

, , , , &
Pages 2956-2969 | Received 26 Oct 2015, Accepted 14 Dec 2015, Published online: 05 Aug 2016
 

Abstract

hPAMAM/DNA polyplexes, compared to viral vectors, display unique characteristics including more safety, less immune response outcomes, a simpler synthesis and an easier process. Given the importance of these polymers, hPAMAM coated with the PEGDGA copolymer was developed as a promising non-viral gene carrier. In the present study, a new complex of hPAMAM, PEGDGA-modified hyperbranched polyamidoamine (hPAMAM), was established as a versatile non-viral gene vector. The hPAMAM polymer was synthesized by using a modified one-pot method. The resulting hPAMAM–PEGDGA polymer was able to efficiently protect encapsulated-DNA against degradation for over 2 h. In addition to low cytotoxicity, the transfection efficiency of hPAMAM–PEGDGA represented much higher (p < 0.05) than that of Lipofectamine 2000 in both MCF7 and MDA-MB231 cells (an approximately 4.5-fold increase). Cellular uptake of hPAMAM–PEGDGA in MDA-MB231 cells, 254.79 ± 2.1, was significantly higher than that in MCF7 cells, 51.61 ± 6.1 (p < 0.05). EMA-labeled DNA can be clearly observed in the tumor tissue of mice receiving hPAMAM-PEGDGA/EMA-labeled DNA. However, a significant number of fluorescent spots can be found in the tumor tissue of mice receiving hPAMAM/DNA, when compared to those treated with naked hPAMAM/DNA. It has been observed that GFP is expressed more highly in hPAMAM-PEGDGA/EMA-labeled/DNA than the one in PAMAM/DNA. The results indicated that hPAMAM-PEGDGA-mediated gene delivery to breast cancer cells is a feasible and effective strategy that may offer a new therapeutic avenue as a non-viral gene delivery carrier. Notably, According to these findings, this newly-introduced copolymer, the hPAMAM–PEGDGA complex, has proved to be a promising strategy for drug or gene delivery to tissues or cell types of interest, particularly to triple-negative breast cancer.

Declaration of interest

This work was financially supported by the Cancer research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences.

Supplementary material available online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.