122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The hydrophobic amino acid cluster at the cytoplasmic end of transmembrane helix III modulates the coupling of the ß1-adrenergic receptor to Gs

, , , &
Pages 79-88 | Received 31 Oct 2012, Accepted 13 Dec 2012, Published online: 25 Jan 2013
 

Abstract

A cluster of hydrophobic amino acids at the cytoplasmic end of trans-membranal helix III (TM-III) is a common feature among class-A of G protein-coupled receptors (GPCR). We mutagenized alanine 1593.53 to glutamic acid and isoleucine1603.54 to arginine (A159E/I160R) in TM-III of the human ß1-adrenergic receptor (ß1-AR) to disrupt the function of the hydrophobic cluster. Structurally, the combined mutations of A159E/I160R caused an almost 90° tilt in the rotation of Arg1563.50 in the E/DRY motif of TM-III and displaced Tyr1663.60 in intracellular loop 2. The A159E/I160R ß1-AR was uncoupled from Gs as determined by cyclic AMP/adenylyl cyclase assays and by FRET-based proximity measurements between the ß1-AR and Gsα. Isoproterenol induced ß-arrestin trafficking in cells expressing both the wild-type ß1-AR and the A159E/I160R ß1-AR. Isoproterenol markedly increased the phosphorylation of ERK1/2 in cells expressing the WT ß1-AR and this effect was dependent on the activation of the Gs-cyclic AMP-dependent protein kinase → Rap → B-raf axis. However, in cells bearing the A159E/I160R ß1-AR, isoproterenol failed to increase the phosphorylation of ERK1/2. These results indicate that mutations in the Gsα-binding pocket of the GPCR interfered with receptor coupling to Gs and with its downstream signaling cascades.

Acknowledgements

We thank the following investigators for kindly providing the following reagents: Zhijun Luo, at Boston University Medical Center for WT B-Raf and B-Raf K482M, Catherine Berlot, Weis Center for research, Geisinger Clinic, Danville, PA, for Gsα-CFP, Robert Lefkowitz, HHMI, Duke University for the human ß2-AR and ß-Arrestin2-GFP and Stanley Mcknight, University of Washington, Seattle, for MT-REVAB.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.