332
Views
22
CrossRef citations to date
0
Altmetric
Research Article

IGF-1 induces iNOS expression via the p38 MAPK signal pathway in the anti-apoptotic process in pulmonary artery smooth muscle cells during PAH

, , , , , & show all
Pages 325-331 | Received 14 Dec 2013, Accepted 08 Mar 2014, Published online: 27 Mar 2014
 

Abstract

Apoptosis and cell proliferation are two important cellular processes that determine the accumulation of pulmonary artery smooth muscle cells (PASMC) during pulmonary arterial hypertension (PAH). Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, also tissue repair. Inducible nitric oxide synthase (iNOS) has been shown to serve many vasoprotective roles in vascular smooth muscle cells (VSMCs) including inhibition of VSMC proliferation and migration and stimulation of endothelial cell growth. In this study, we investigated the involvement of iNOS in the process of IGF-1-induced inhibition of PASMC apoptosis. We also examined the role of p38 mitogen-activated protein kinase (MAPK) in the IGF-1-induced iNOS activation. Our results show that exogenous IGF-1 induced the up-regulation of iNOS in PASMC. Immunofluorescence of IGF-1 and iNOS showed a decreased immunostaining of both IGF-1 and iNOS in the cytoplasm and the perinucleus under serum deprivation condition. iNOS inhibition in PASMC in vitro markedly induced IGF-1-mediated anti-apoptosis as assessed by the cell viability measurement, Western blot, mitochondrial potential analysis and nuclear morphology determination. A p38 MAPK inhibitor blocked all the effects of IGF-1 on iNOS. Our findings suggest that IGF-1 inhibits cells apoptosis in PASMC by activating the p38 MAPK–iNOS transduction pathway. This mechanism may contribute to the accumulation of PASMC in early human PAH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.