216
Views
7
CrossRef citations to date
0
Altmetric
Research Article

ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA

, , &
Pages 493-504 | Received 10 Dec 2014, Accepted 01 Feb 2015, Published online: 27 May 2015
 

Abstract

Context: Acting through different receptors, natriuretic peptides (atrial natriuretic peptide [ANP], brain type natriuretic peptide [BNP] and C-type natriuretic peptide [CNP]) increase intracellular cGMP, which then stimulates different pathways that activate fluid secretion. Objective: We used two-electrode voltage clamping to define the dominant pathway that is employed when natriuretic peptides activate cystic fibrosis transmembrane conductance regulator (CFTR) in the Xenopus oocyte expression system. Natriuretic peptides could activate CFTR by 1) cGMP cross-activation of protein kinase A (PKA), 2) cGMP activation of cGMP-dependent protein kinase II, 3) cGMP inhibition of phosphodiesterase type III (PDE3), or 4) direct activation of CFTR. Materials and Methods: cRNA-microinjected Xenopus laevis oocytes were perfused with diverse compounds that examined these pathways of natriuretic peptide signaling. Results and Discussion: ANP stimulated the shark CFTR (sCFTR)-mediated chloride conductance and this activation was inhibited by H-89, a specific inhibitor of PKA. After co-expression of the CNP receptor (NPR-B), sCFTR became stimulatable by CNP and was similarly inhibited by H-89, pointing to cross-activation of PKA. 8-pCPT-cGMP, a relatively cGKII-selective cGMP, failed to stimulate sCFTR. Another membrane-permeable and non-hydrolyzable analog of cGMP, 8-Br-cGMP, stimulated CFTR only at millimolar concentrations, consistent with cross-activation of PKA. The PDE inhibitors EHNA, rolipram, cilostamide, and amrinone did not significantly increase chloride conductance, arguing against a significant role for PDE2, PDE3 and PDE4 signaling in the oocyte. Sildenafil, a PDE5 inhibitor, caused a partial activation of sCFTR channels and this effect was again inhibited by H-89. Conclusion: From these experiments we conclude that in the Xenopus oocyte system, natriuretic peptides, 8-Br-cGMP, and PDE5 inhibitors activate CFTR by cross-activation of PKA.

Acknowledgements

We thank Ryan Martin, Denry Sato and Christine Chapline for their excellent help.

Declaration of interest

This work was supported by NIH grants DK34208, NIEHS 5 P30 ES03828 (Center for Membrane Toxicology Studies) to J. N. F., NSF grant DBI-0139190 (REU site at MDIBL), and an MDIBL New Investigator Award to H. R. d. J. The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.