869
Views
77
CrossRef citations to date
0
Altmetric
Research Article

The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis

, , , , , & show all
Pages 640-645 | Received 12 Mar 2015, Accepted 08 Apr 2015, Published online: 22 Sep 2015
 

Abstract

Background: Osteoporosis is a systemic skeletal disease with the high incidence, serious complications, financial burden, and heavily decrease in living quality. Methods: Proliferation of osteoblast was tested by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method, alkaline phosphatase (ALP) activity of osteoblasts was tested by ALP REAGENT, Calcium level was determined by a colorimetric assay, mRNA expression of phosphoinositide-3 kinase (PI3K), 3-phosphoinositide-dependent protein kinase 1 (PDK1), Akt, Caspase-3, Caspase-7, Caspase-9, osteocalcin (OCN), Osterix and Runx2 of osteoblasts was tested by RNA preparation and quantitative reverse transcription polymerase chain reaction (RT-PCR), and protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt was measured by Western Blot analysis. Results: In osteoporosis model rats, it found that mRNA expression of PI3K, PDK1 and Akt showed no changes while protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt in bone tissue was decreased dramatically. To further characterize the molecular mechanisms that regulate osteoporosis, we examined the contribution of the PI3K/Akt cell signaling pathway in cultured osteoblasts. It suggested that, the blockade of PI3K activation by LY294002, a specific inhibitor of the PI3K/Akt signaling pathway in osteoblasts, heavily inhibited cell proliferation, ALP activity, calcium accumulation, and mRNA expression of OCN, Osterix and Runx2. However, mRNA expression of Caspase-3 and Caspase-9 was promoted accordingly. Conclusion: The in vivo and in vitro studies indicated that the PI3K/Akt cell signaling pathway is involved in the inhibition of osteoporosis through promoting osteoblast proliferation, differentiation and bone formation.

Declaration of interest

The authors declare that they have no competing interests.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.