633
Views
9
CrossRef citations to date
0
Altmetric
Review Article

The power of mass spectrometry in structural characterization of GPCR signaling

, &
Pages 213-219 | Received 15 Jul 2014, Accepted 15 Aug 2014, Published online: 12 Oct 2015
 

Abstract

Mass spectrometry (MS)-based proteomics is an unrivaled tool for studying complex biological systems and diseases in the post-genomic era. In recent years, MS has emerged as a powerful structural biological tool to characterize protein conformation and conformational dynamics. The advantages of MS in structural studies are most evident for membrane proteins such as GPCRs (G protein-coupled receptors), where other well-established structural methods such as X-ray crystallography and NMR remain challenging. For proteins with available high-resolution structures, MS-based structural strategies can provide valuable, previously inaccessible information on protein conformational changes and dynamics, protein motion/flexibility, ligand–protein binding, and protein–protein interfaces. In the past several years, we have developed and adapted a number of MS-based structural approaches, such as CDSiL-MS (Conformational changes and Dynamics using Stable-isotope Labeling and MS), CXMS (Crosslinking/MS) and HDXMS (Hydrogen-Deuterium Exchange MS), to study protein structures and conformational dynamics in human β2-adrenegic receptor (β2AR) signaling. In this mini-review, we will highlight several examples demonstrating the power of MS in structural analysis to better elucidate the structural basis of GPCR signaling, particularly through the β-arrestin-mediated GPCR signaling pathway.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.