10
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Binding of DL-[3H]-alpha-Amino-3-Hydroxy-5-Methyl-Isoxazole-4-Propionic Acid (AMPA) to Rat Cortex Membranes Reveals Two Sites or Affinity States

, , &
Pages 727-741 | Published online: 26 Sep 2008
 

Abstract

A method for measuring [3H]-AMPA binding in rat cortex membranes is described. Specific binding was saturable and accounted for 95% of total binding at 5 nM of [3H]-AMPA. Non linear curve fitting of [3H]-AMPA saturation isotherms suggested the presence of two binding sites: the high affinity site showed a pKd of 8.26 ± 0.07 (Kd = 5.49 nM) and a Bmax of 0.19 ± 0.03 pmol/mg protein, whereas the low affinity site indicated a pKd of 7.28 ± 0.05 (Kd = 52 nM) and a Bmax of 1.30 ± 0.23 pmol/mg protein. The pharmacological profile of [3H]-AMPA binding has been determined by studying a series of compounds in binding displacement experiments: Quisqualate was the most potent inhibitor of [3H]-AMPA binding (IC50 = 9.7 nM), followed by AMPA (19 nM), CNQX, DNQX and L-Glutamate (272–373 nM). Kainate was a moderate displacer (6.2 μM); Ibotenic acid and glycine were very weak inhibitors (74 and 92 μM, respectively). CPP, GAMS and L-Aspartic acid showed IC50-values of over 400 μM and MK-801, DL-AP5 and NMDA were almost inactive at the maximal concentration used in our experiments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.