36
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Minireview: Noncompetitive Agonism at Nicotinic Acetylcholine Receptors; Functional Significance for CNS Signal Transduction

, , , , , , , , & show all
Pages 333-353 | Published online: 26 Sep 2008
 

Abstract

The alkaloids (-)physostigmine (Phy), galanthamine (Gal) and codeine (Cod), and several derivatives and homologous compounds, can act as noncompetitive agonists (NCA) of nicotinic acetylcholine receptors (nAChR) from Torpedo electrocytes, frog and mammalian muscle cells, clonal rat pheochromocytoma cells, cultured hippocampal neurons and several ectopic expression systems, by interacting with a binding site on the α-subunits of these nAChRs that is insensitive to the natural transmitter, acetylcholine (ACh), and AChcompetitive agonists and antagonists. Several endogenous ligands, including opioid-type compounds, can also act via this site, albeit at higher concentrations than is typical for the interaction with their cognate receptors. The NCA-evoked responses can be observed at the single-channel level but they do not summate to significant macroscopic currents, suggesting that the major role of NCAs is to act as “co-agonists”, thereby potentiating nAChR channel activation by the natural transmitter. In more general terms, noncompetitive agonists may constitute part of a “chemical network”, by which intercellular messengers, in addition to serving their cognate receptors, could modulate the sensitivity of other neuroreceptors to their archetypic ligands. Such a mode of action would make centrally acting NCAs interesting candidate drugs in the treatment of neurodegenerative diseases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.