11
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The Role of Receptor Kinase Activity and the Npey960 Motif in Insulin-Accelerated Receptor-Mediated Insulin Internalization

, , &
Pages 339-355 | Published online: 26 Sep 2008
 

Abstract

This study used biochemical and quantitative ultrastructural approaches to examine the roles that insulin receptor β subunit kinase activity, the NPEY motif in the juxtamembrane region, and tyrosine phosphorylation within that domain plays in insulin-accelerated receptor-mediated insulin internalization in CHO cells. Internalization of insulin in cells that expressed kinase-deficient receptors (CHOA1018) or receptors lacking the NPEY Ala954-Asp965 domain (CHOδ960) was reduced by 80% compared to cells expressing wild-type human insulin receptors (CHOHIRc). Ultrastructural analysis revealed that the decreased internalization in CHOA1018 cells was due to the reduced ability of the kinase deficient receptor to migrate from the microvilli of cultured cells and aggregate on the cell surface. Deletion of the NPEY motif in the juxtamembrane region of the β subunit severely reduced receptor migration, interfered with the normal aggregation of receptors on the cell surface, and virtually eliminated accumulation of the occupied receptors in the coated invaginations. Replacement of Tyr960 in the NPEY domain with phenylalanine (CHOp960) had no significant effect on insulin internalization, receptor mobility, aggregation or accumulation in coated invaginations. In contrast, replacement of Tyr960 with alanine (CHOA960) decreased insulin internalization, slowed migration, receptor aggregation and accumulation in coated invaginations. These studies document that kinase activity is required, but not sufficient, for receptor movement from the microvilli and aggregation of occupied receptors on the non-villous surface. An intact NPEY motif or surrounding amino acids, but not the phosphorylation of Tyr960 plays a role in receptor mobility and aggregation and is essential for the accumulation of insulin receptors in coated invaginations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.