15
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Studies on Capacitative Calcium Entry in Vascular Smooth Muscle Cells by Measuring 45Ca2+ Influx

&
Pages 163-175 | Published online: 26 Jun 2009
 

Abstract

Capacitative calcium entry was studied in the A7r5 vascular smooth muscle cell line by measuring 45Ca2+ influx. Entry was induced by depletion of the Ca2+ pools by either the receptor agonist [Arg]8vasopressin (AVP) or the SR-Ca2+-ATPase inhibitor thapsigargin (TG). TG showed a higher efficacy for calcium influx than AVP. This is probably due to a larger Ca2+ release from the pools induced by TG compared to AVP and the irreversible inhibition of the SR-Ca2+-ATPase by TG causing influx to persist for a longer period of time. At maximally effective concentrations signals induced by AVP and TG were synergistic in the absence but not in the presence of the intracellular calcium chelator, 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Depolarisation with 55 mM KCl completely inhibited 45Ca2+ influx induced by TG but only slightly the one induced by AVP, both effects being less pronounced in the presence of BAPTA. [Ca2+]c signals induced by AVP and TG were both inhibited by depolarisation.

In conclusion, although our results show differences between AVP- and TG-induced Ca2+ influx, they can be explained by their different mechanism of action and are in accordance with an activation of the same capacitative entry pathway by both agents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.