19
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Application of a Novel Method for the Comparison of DNA Binding Parameters of the Two Human Thyroid Hormone Receptor Subtypes hTRα1 and hTRβ1

, &
Pages 355-371 | Published online: 26 Jun 2009
 

Abstract

DNA-binding characteristics of the two human thyroid hormone receptors α1 and β1 (hTRα1 and hTRβ1) were studied by applying the recently developed solid-phase scintillation technique. Biotinylated double stranded oligonucleotides containing thyroid hormone response elements (TRE) were immobilized to streptavidin coated scintillating microtiter plates. The TRE:s consisted of variants of the consensus core sequence AGGTCA as monomers or as dimers in direct repeats. Equilibrium binding of radioactive labelled hTRα1 and hTRβ1 were studied. Metabolically 35S-labelled hTR (in vitro translated cDNA) as well as hTR expressed in the baculovirus-system and labelled with 125I-triiodothyronine (125I-T3) were used. In binding saturation experiments, the affinity for the TRE:s investigated did not differ greatly between hTRα1 and hTRβ1. No significant effects of T3 on the amplitude of DNA binding of either hTRα1 or hTRβ1 to the single site response elements could be demonstrated. Receptor binding to direct repeats was stimulated by the hormone in the case of the hTRβ1. The hTRα1 binding to direct repeats was not significantly altered by T3. The single site octameric variant of a TRE. TAAGGTCA, was observed to bind tighter to the hTR:s as compared to the hexameric variant AGGTCA. In the binding competition format, with one response element immobilized and other (un-biotinylated) added to the reaction mixture, there was a larger dymanic range for the affinity constants (IC50) as compared to the affinity constants (Kd) obtained in the binding saturation experiments. The present quantitative results confirm previous reports obtained with qualitative methods like gel shift assays. The method described here is applicable in basic research concerning characterisation of DNA binding of nuclear receptors. It also lends itself to automatization in high capacity formats.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.