46
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Receptor-Operated Calcium Influx Mediated by Protein Tyrosine Kinase Pathways

Pages 281-310 | Published online: 26 Sep 2008
 

Abstract

Calcium influx from the extracellular space elicited by activation of heterotrimeric G protein-coupled and heptahelical receptors plays a critical role in transmembrane signal transduction in a wide variety of cell systems. In nonexcitable cells, the precise voltage-independent mechanism by which calcium enters the cell remains unknown. Multiple mechanisms appear to be operating in different cell types (1–3): 1. G protein-operated calcium influx, 2. second messenger-operated calcium influx, 3. capacitative calcium influx, and 4. phosphorylation of calcium channels. Receptor-operated calcium channels have a fundamental role in stimulus-secretion coupling in many different cells, but these channels remain to be purified and cloned. This review proposes that receptor-operated calcium influx is mediated by protein tyrosine kinase pathways. The function of protein tyrosine kinase pathways and their interactions with other receptor-operated calcium influx mechanisms are described.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.