17
Views
5
CrossRef citations to date
0
Altmetric
Original Article

The Uncoupled State of the Human Formyl Peptide Receptor

, &
Pages 327-340 | Published online: 10 Jul 2009
 

Abstract

The formyl peptide receptor (FPR) has been widely used to study the kinetics of the interaction between ligand, receptor and G protein with real-time fluorescence methods. Because the wild type receptor rapidly signals, and is then desensitized and internalized once occupied by ligand, it has been difficult to study the uncoupled receptor form. We have examined a mutant form of the FPR expressed in U937 cells that does not bind G protein and is thus ideal to study the uncoupled form of the FPR in the intact cell. Using kinetic flow cytometry, we have measured the dissociation kinetics of a fluorescent ligand from this mutant in intact. permeabilized and fixed cells. We observed a novel uncoupled receptor form in the intact cell with a dramatically reduced off-rate (-0.02 s-1) from LR in a broken cell preparation (∼0.2 s-1). Both receptor forms are retained in the presence of formaldehyde. We also observed this novel receptor form coexisting with the LRG complex when the wild type receptor is fixed in neutrophils or transfectants. These results lead us to suggest that there are distinct receptor structures in cells and membranes and that only a fraction of receptors in intact cells exist in the uncoupled form.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.