255
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Ultrastructural changes in bacterial membranes induced by nano-assemblies β-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation

, , , , &
Pages 600-608 | Received 15 Sep 2011, Accepted 06 Dec 2011, Published online: 20 Jan 2012
 

Abstract

Chemical hosts bind their guests by the same physical mechanisms as biomolecules and often display similarly subtle structure activity relationships. The cyclodextrins have found increasing application as inert, nontoxic carriers of active compounds in drug formulations. The present study was conducted to prepare inclusion complexes of chlorhexidine:β-cyclodextrin (Cx:β-cd), and evaluate their interactions with bacterial membrane through: scanning electron microscopy (SEM) and transmission electron microscopy (TEM); and measuring morphology alterations, roughness values, and cell weights by atomic force microscopy (AFM). It was found that the antimicrobial activity was significantly enhanced by cyclodextrin encapsulation. SEM analysis images demonstrated recognizable cell membrane structural changes and ultrastructural membrane swelling. By TEM, cellular alterations such as vacuolization, cellular leakage, and membrane defects were observed; these effects were enhanced at 1:3 and 1:4 Cx:β-cd. In addition, AFM analysis at these ratios showed substantially more membrane disruption and large aggregates mixing with microorganism remains. In conclusion, nanoaggregates formed by cyclodextrin inclusion compounds create cluster-like structures with the cell membrane, possibly due to a hydrogen rich bonding interaction system with increasing surface roughness and possibly increasing the electrostatic interaction between cationic chlorhexidine with the lipopolysaccharides of Gram negative bacteria.

Acknowledgements

We are grateful for CNPq, CAPES, FAPEMIG, INCT/Nanobiofar that support this investigation.

Declaration of interest

The authors declare no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.