91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of simulated precompression, compression pressure and tableting speed on an offline diffuse transmittance and reflectance near-infrared spectral information of model intact caffeine tablets

&
Pages 90-98 | Received 25 Nov 2013, Accepted 24 Jul 2014, Published online: 14 Aug 2014
 

Abstract

Near-infrared spectroscopy (NIRS) is used in the pharmaceutical industry for monitoring drug content during the tablet manufacturing process. It is of critical importance to understand the effect of process factors on NIRS performance. Design of Experiments (DoE) methodology was applied in this work for the systematic study of the effects of compression pressure, precompression pressure and tableting speed on an average Euclidean distance (AED), which reflects spectral features of the tablets, and root mean-squared error of prediction (RMSEP) as key performance indicator of NIRS calibration models. Caffeine tablets were manufactured in 17 experimental runs in accordance with D-optimal design. Developed diffuse transmittance (DT) and diffuse reflectance (DR) calibration models were tested on five independent test sets to confirm the conclusions of the DoE. Compression pressure and tableting speed have shown significant effect on the studied responses in DT mode, whereas all three studied factors have shown a significant effect in DR mode. Significant factors were considered in the development of the global calibration models. The authors suggest further study of RMSEP and AED responses to draw reliable conclusions on the effects of tableting process factors. The global calibration model in DT mode has shown superior performance compared to DR mode.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.