121
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The modulation of physicochemical characterization of innovative liposomal platforms: the role of the grafted thermoresponsive polymers

, , , , &
Pages 330-335 | Received 26 Jun 2015, Accepted 05 Nov 2015, Published online: 07 Dec 2015
 

Abstract

This study is focused on chimeric advanced drug delivery systems and specifically on thermosensitive liposomes, combining lipids and thermoresponsive polymers. In this investigation, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) chimeric liposomal systems were prepared, incorporating the homopolymer C12H25-poly(N-isopropylacrylamide)-COOH (C12H25-PNIPAM-COOH) and the block copolymer poly(n-butylacrylate-b-N-isoropylacrylamide) (PnBA-PNIPAM), at six different molar ratios. Both of these polymers contain the thermoresponsive PNIPAM block, which exhibits lower critical solution temperature (LCST) at 32 °C in aqueous solutions, changing its nature from hydrophilic to hydrophobic above LCST. During the preparation of liposomes, the dispersions were observed visually, while after the preparation we studied the alterations of the physicochemical characteristics, by measuring the size, size distribution and ζ-potential of prepared liposomes. The presence of polymer, either C12H25-PNIPAM-COOH or PnBA-PNIPAM, resulted in liposomes exhibiting different physicochemical characteristics in comparison to conventional DPPC liposomes. At the highest percentage of the polymeric guest, chimeric liposomes were found to retain their size during the stability studies. The incorporation of the appropriate amount of these novel thermoresponsive polymers yields liposomal stabilization and imparts thermoresponsiveness, due to the functional PNIPAM block.

Declaration of interest

The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.