149
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Rhinosurgical Therapy Planning via Endonasal

, , , &
Pages 175-179 | Received 05 Nov 1999, Accepted 18 Feb 2000, Published online: 06 Jan 2010
 

Abstract

Nowadays, Computational Fluid Dynamics (CFD) methods play an important part in the production process of the automotive industry. Progress in recent years has made possible highly sophisticated airflow-simulation models that are used in engineering for optimization and verification of aerodynamics. The key purpose of the Simulation Tool for Airflow in the human Nose (STAN), developed at the Darmstadt University of Technology in cooperation with the University Hospital in Greifswald, is to use these techniques to support the rhinosurgeon in diagnosis and planning of therapy (Friihauf T, Mlynski G. Simulation and visualization of the air flow in the human nose. Proceedings of the First World Congress on Computational Medicine, Austin, Texas, 1994). A system has been developed that realizes a three-dimensional (3D) reconstruction of the endonasal cavities based on computer tomography (CT) scans. This semiautomatic reconstruction method requires minimal manual intervention. The surface model is used to create an unstructured 3D volume mesh suitable for finite volume simulations. In this way, an individual simulation based on patient-specific data can be realized. At the University Hospital in Greifswald, experimental investigations and measurements are made in nasal models to verify the simulation result. The goal of this project is to investigate individual nasal complaints and to detect respiratory disorders. The surgeon should be able to simulate the disordered respiration before performing a surgical procedure, and thereby increase the effectiveness of surgical planning. Comp Aid Surg 5:175-179 (2000). cP2000 Wiley-Liss, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.