322
Views
35
CrossRef citations to date
0
Altmetric
Original Article

Spine Needle Biopsy Simulator Using Visual and Force Feedback

, , , , , , , , , , , , & show all
Pages 353-363 | Received 06 Sep 2001, Accepted 26 Nov 2002, Published online: 06 Jan 2010
 

Abstract

Objective: Biopsy with an inserted needle is an important procedure for lesion detection in the spine, but is difficult to perform due to the presence of many critical organs near the spine. This article presents a spine needle biopsy simulator, based on visual and force feedback, which can be used to plan the optimal path of a needle and to practice the procedure without risk.

Materials and Methods: The simulator is composed of a 3D human model, a visual-feedback component, a force-feedback component, and an evaluation module. The human model is based on 3D CT data. The visual-feedback component provides an oblique section, multiplanar reformatting images, and a volume-rendered image. Of these, the oblique section display is very useful for planning a 3D path for the needle. During simulation, the force-feedback component generates and provides realistic forces acting on the biopsy needle in real time by synchronizing them to visual feedback. After each simulation, the evaluation module provides a performance analysis for the trainee.

Results: For an XCT abdomen volume data set of 256 × 256 × 256, the update rate of image rendering due to needle movement is over 25 Hz, with a force-feedback rate of 1 kHz. This performance proved to be good enough for the trainee to learn the relationship between visual and force feedback.

Conclusions: The simulator is useful for the planning of and training in complicated 3D spine needle biopsy procedures. It may be used as an educational tool for beginners, a practice tool to increase expertise, or a test bed for new procedures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.