722
Views
6
CrossRef citations to date
0
Altmetric
Biomedical Paper

Accurate and reliable pose recovery of distal locking holes in computer-assisted intra-medullary nailing of femoral shaft fractures: A preliminary study

, , , , &
Pages 138-151 | Received 08 Aug 2006, Accepted 11 Oct 2006, Published online: 06 Jan 2010
 

Abstract

Objective: One of the difficult steps in intra-medullary nailing of femoral shaft fractures is distal locking – the insertion of distal interlocking screws. Conventionally, this is performed using repeated image acquisitions, which leads to considerable irradiation of the patient and surgical team. Virtual fluoroscopy has been used to reduce radiation exposure, but can only provide multi-planar two-dimensional projection views. In this study, two calibrated fluoroscopic images were used to automatically recover the positions and orientations of the distal locking holes (DLHs). The ultimate goal is to provide precise three-dimensional guidance during distal locking.

Methods: A model-based optimal fitting process was used to reconstruct the positions and orientations of the DLHs from two calibrated fluoroscopic images. No human intervention is required. A preliminary in vitro validation study was conducted to analyze the accuracy and reliability of the technique using images acquired from different viewpoints. The ground truths of the DLH were obtained by inserting a custom-made steel rod through the hole and then digitizing both the top and bottom centers of the rod using a sharp pointer. The recovery errors were computed by comparing the computed results to the ground truths.

Results: In all experiments, the poses of the DLHs could be recovered fully automatically. When the recovered positions and orientations of the DLHs were compared to their associated ground truths, a mean angular error of 0.5° (STD = 0.2°), and a mean translational error of 0.1 mm (STD = 0.0 mm) were found.

Conclusions: Accurate and reliable pose recovery of distal locking holes from two calibrated fluoroscopic images is achievable. Our preliminary in vitro experimental results demonstrate that the recovered poses of the distal locking holes are sufficiently accurate for intra-operative use.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.