8
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Smoking-reIated DNA adducts and genetic polymorphism for metabolic enzymes in human lymphocytes

, , , , &
Pages 211-214 | Received 09 Nov 1995, Accepted 24 Feb 1996, Published online: 27 Sep 2008
 

Abstract

Smoking-related aromatic DNA adducts in lymphocytes were measured from smokers (n = 76), ex-smokers (n = 25) and non-smokers (n = 56) by the 32P-postlabelling method, to clarify whether a genetic polymorphism for metabolic enzymes could explain the inter-individual variation of DNA adduct levels. Adduct levels were compared with respect to smoking status and polymorphic genotypes of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GTSM1). The mean adduct level (1.24 per 108 nucleotides) in smokers was significantly higher than that (0.85 per 108) in non-smokers. Although we expected higher adduct levels in the CYP1A1 variant or GSTM1 null subjects, the adduct level in ‘GSN1 nulls’ was significantly lower than that in ‘GSTM1 presents’ among smokers. DNA adduct levels had significant positive correlations with smoking indices such as number of cigarettes or smoking years in all subjects. In smokers only, however, no correlation was found, because there were negative correlations between adduct levels and smoking dose in GSTM1 null genotypes. CYP1A1 genotypes had no effects on adduct levels.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.