3
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Myocardial Protection During Aortic Valve Replacement. Cardiac Metabolism and Enzyme Release Following Hypothermic Cardioplegia

, , , &
Pages 43-49 | Received 17 Apr 1979, Published online: 12 Jul 2009
 

Abstract

Cardiac metabolism following hypothermic potassium cardioplegia was studied in 23 patients undergoing isolated aortic valve replacement. All had normal coronary arteries. Cardioplegia was induced by infusing 700–1000 ml of cold Ringer's acetate containing 20 mekv K+ selectively into the left coronary artery. Simultaneous blood samples were taken from the radial artery, a central vein and from the coronary sinus before and after cardioplegia. The PO2, O2-saturation and content, PCO2, pH, lactate, glucose, potassium, myoglobin, total creatine kinase (CK), its isoenzyme CK-MB, aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) were assessed. Before bypass lactate was extracted by the heart. During the initial 10 to 20 min after cardioplegia there was a marked release of lactate in the coronary sinus. Myoglobin concentration and CK-MB serum activity peaked during the first 4 hours after the release of the aortic cross-clamping. In order to determine the best indicator of myocardial damage after cardioplegia, duration of extracorporeal circulation (ECC-time), aortic occlusion time (AOT), mean myocardial temperature (MMT) and the product of AOT and MMT, referred to as time-temperature area (TTA), were related to possible indicators of myocardial injury, such as enzyme and myoglobin release. The TTA was the best way of expressing the degree of exposure of the heart to ischaemia. The CK-MB to peak area (CK-MB max area) was the best indicator of the degree of ischaemic injury sustained by the heart during operation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.