119
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Subclinical reduced G6PD activity in rheumatoid arthritis and Sjögren's Syndrome patients: Relation to clinical characteristics, disease activity and metabolic syndrome

, , , &
Pages 612-617 | Received 22 Aug 2013, Accepted 02 Oct 2013, Published online: 07 Nov 2013
 

Abstract

Objective. Glucose-6-phosphate dehydrogenase (G6PD) is an important site of metabolic control in the pentose phosphate pathway. The purpose of this study was to investigate the enzyme activity of G6PD in Rheumatoid Arthritis (RA) and Sjögren's Syndrome (SS) patients not known to be deficient in this enzyme. It was also within the scope of the aim to find the relation of G6PD to the presence of metabolic syndrome (MetS) in these patients.

Methods. Erythrocyte G6PD activity was evaluated in 40 RA patients, 30 SS patients and in 30 age- and sex-matched control. The clinical characteristics, disease activity score (DAS28), SS disease activity (SSDAI) and damage (SSDDI) indices and presence of MetS of the included patients were analyzed in relation to the enzyme level.

Results. The G6PD activity in RA patients (7.72 ± 3.57 U/g Hb) was significantly reduced compared to that in the SS patients (11.55 ± 3.14 U/g Hb) and control (13.23 ± 3.34 U/g Hb) especially those with MetS (4.61 ± 1.84 U/g Hb) (p < 0.001). There was a significant negative correlation of the G6PD activity with the disease duration and DAS28 (p < 0.001).

Conclusion. The results of this study, suggest that G6PD not only does not protect against MetS in RA, but may even be considered a risk factor for the development of this disorder. The identification of regulatory tools for G6PD activity may prove promising for treating the associated metabolic disorders and chronic inflammation in RA.

Conflict of interest

None.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.