4
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Effects of In Vivo Administration of 10-Propargylestr-4-Ene-3,17-Dione on Rat Ovarian Aromatase and Estrogen Levels

, &
Pages 143-152 | Received 05 Jun 1990, Published online: 27 Sep 2008
 

Abstract

We have previously demonstrated that 10-propargylestr-4-ene-3,17-dione (PED) functioned as an irreversible inhibitor of rat ovarian aromatase in vitro. These studies were undertaken to examine the in vivo effects of PED on rat ovarian aromatase activity and estrogen production. In the current experiments, a single injection of PED (0.5 or 2.5mg/kg) was found to maximally inhibit aromatase at 3h regardless of dose. Significant inhibition of enzyme activity by PED was observed beyond 18 h, although some recovery was noted at the lower dose (0.5mg/kg). Concomitantly, ovarian estrogen levels were also maximally reduced at 3 h, however ovarian estrogen levels returned toward control values prior to the recovery in enzyme activity. Even though significant inhibition of enzyme activity was observed at 12 h following a single injection of PED, the effect of double injections of the inhibitor at 12 h intervals was surprisingly not cumulative. Similarly, continued multiple injections of PED revealed significant inhibition of enzyme activity and estrogen production several hours after the injection, but variations in effectiveness were observed by 12 h which changed in accordance with a circannual cycle in aromatase. Apparently other factors are involved with maintaining aromatase levels and compensating for reduced enzyme activity. These mechanisms are evidenced by a continuation of the rat reproductive cycle with prolonged PED administration and a reduced influence of PED in regard to enzyme inhibition at certain times of the year. Despite these variations in the duration of action of PED, no comparable changes were observed in effectiveness as an anti-tumor agent. These results suggest that complex mechanisms exist which regulate the activity of aromatase in order to maintain estrogen production. Further research using compounds such as PED may assist in elucidating the factors that modulate ovarian estrogen production.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.