482
Views
30
CrossRef citations to date
0
Altmetric
Original Article

Molecular Modelling of Lanosterol 14α-Demethylase (CYPSl) from Saccharomyces Cerevisiae via Homology with CYP102, a Unique Bacterial Cytochrome P450 Isoform: Quantitative Structure-Activity Relationships (QSARs) within two Related Series of Antifungal Azole Derivatives

, &
Pages 175-192 | Received 20 Aug 1998, Published online: 02 Jul 2009
 

Abstract

The construction of a three-dimensional molecular model of the fungal form of cytochrome P450 (CYP51) from Succhuromyces cerevisiae, based on homology with the haemoprotein domain of CYP102 from Bacillus megaterium (a unique bacterial P450 of known crystal structure) is described. It is found that the endogenous substrate, lanosterol, can readily occupy the putative active site of the CYP51 model such that the known mono-oxygenation reaction, leading to C14−demethylation of lanosterol, is the preferred route of metabolism for this particular substrate. Key amino acid contacts within the CYP51 active site appear to orientate lanosterol for oxidative attack at the C14−methyl group, and the position of the substrate relative to the haem moiety is consistent with the phenyl-iron complexation studies reported by Tuck et al. [J. Biol. Chem., 267, 13175-13179 (1992)l. Typical azole inhibitors, such as ketoconazole, are able to fit the putative active site of CYP51 by a combination of haem ligation, hydrogen bonding, π-π stacking and hydrophobic interactions within the enzyme's haem environment. The mode of action of azole antifungals, as described by the modelling studies, is supported by quantitative structure-activity relationship (QSAR) analyses on two groups of structurally related fungal inhibitors. Moreover, the results of molecular electrostatic isopotential (EIP) energy calculations are compatible with the proposed mode of binding between azole antifungal agents and the putative active site of CYPSI, although membrane interactions may also have a role in the antifungal activity of azole derivatives

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.