168
Views
8
CrossRef citations to date
0
Altmetric
Articles

Tuning, coupling and matching of a resonant cavity in microwave exposure system for biological objects

&
Pages 218-225 | Published online: 15 May 2013
 

Abstract

A new microwave exposure system for biological experiments with well-defined exposure conditions and improved control of the exposure parameters consisting of variable frequency power source, coaxial to waveguide transition, matching network and single-mode resonant cavity with movable shorting plunger was fabricated and characterized. The introduction of a biological sample into a resonant cavity has a large impact on its field configuration and port impedance. As such, the properties, geometry and position of the biological sample become a part of the electrical properties of the microwave circuit. With that change, the electrical properties of the resonant cavity, such as impedance, quality factor and resonant frequency, also change. In this study, an appropriate coupling system with effective power transfer and an algorithm to tuning and coupling of resonant cavity in resonance before and after the introduction of biological sample have been proposed. This procedure will lead to a known dose distribution within the biological sample and allow a better comparison with other studies. Coupling of the electromagnetic energy into a resonant cavity was experimentally investigated. Graphical representation of cavity impedance in case of undercoupled, critically coupled and overcoupled cavity has been presented. Critical coupling of an empty resonant cavity has been accomplished at voltage standing wave ratio (VSWR) 1.01, at resonance frequencies 900 and 947.5 MHz. Critical coupling with the introduction of a biological sample has been accomplished at VSWR ≤ 1.07 for frequency bandwidth 1 MHz and VSWR ≤ 1.5 for frequency bandwidth up to 5 MHz with central frequency 947.5 MHz.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.