221
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Effects of moderate static magnetic fields on the voltage-gated sodium and calcium channel currents in trigeminal ganglion neurons

, , , , , & show all
Pages 285-292 | Received 22 Oct 2013, Accepted 09 Mar 2014, Published online: 08 Apr 2014
 

Abstract

Aim: To study the effects of static magnetic fields (SMF) on the electrophysiological properties of voltage-gated sodium and calcium channels on trigeminal ganglion (TRG) neurons. Methods: Acutely dissociated TRG neurons of neonatal SD rats were exposed to 125-mT and 12.5-mT SMF in exposure devices and whole-cell patch-clamp recordings were carried out to observe the changes of voltage-gated sodium channels (VGSC) and calcium channels (VGCC) currents, while laser scanning confocal microscopy was used to detect intracellular free Ca2+ concentration in TRG neurons, respectively. Results: (1) No obvious change of current–voltage (I–V) relationship and the peak current densities of VGSC and VGCC currents were found when TRG neurons were exposed to 125-mT and 12.5-mT SMF. However, the activation threshold, inactivation threshold and velocity of the channel currents above were significantly altered by 125-mT and 12.5-mT SMF. (2) The fluctuation of intracellular free Ca2+ concentration within TRG neurons were slowed by 125-mT and 12.5-mT SMF. When SMF was removed, the Ca2+ concentration level showed partial recovery in the TRG neurons previously exposed by 125-mT SMF, while there was a full recovery found in 12.5-mT-SMF-exposed neurons. Conclusions: Moderate-intensity SMF could affect the electrophysiological characteristics of VGCS and VGCC by altering their activation and inactivation threshold and velocity. The fluctuations of intracellular free Ca2+ caused by SMF exposure were not permanent in TRG neurons.

Acknowledgements

We would like to thank Ms. Daqing Liao, Ms. Yanfang Chen and Ms. Xiaoyu Li for their technical assistance.

Declaration of interest

This research was funded by The National Natural Science Foundation of China for Young Scholars. Grant No. 81000456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.