24
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Fast Keyhole MR Imaging Using Optimized k-Space Data Acquisition

, , &
Pages 307-321 | Published online: 07 Jul 2009
 

Abstract

In some dynamic magnetic resonance imaging (MRI) applications, the sample is still, and only the signal intensity changes with time. For such cases, the keyhole imaging principle can be used. In standard keyhole imaging, a low-frequency image signal is acquired, using a limited number of phase-encoding steps, which correspond to the rectangular sampling region in the k-space center. However, such a region practically never coincides with the position of the k-space points, which carry the most relevant low-frequency image information. In this paper we propose an improved keyhole method, which allows dynamic acquisition of a low-frequency image signal from selected most relevant k-space points via fast imaging mechanisms. Dynamic data acquisition is executed in the presence of time-varying magnetic-field (MF) gradients after single sample excitation. Special care has been taken in the design of the gradient sequence to minimize gradient load. This improved keyhole imaging method has been considered theoretically and verified experimentally on a model system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.