96
Views
96
CrossRef citations to date
0
Altmetric
Original Article

Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organizatio

, &
Pages 391-399 | Published online: 07 Jul 2009
 

Abstract

Electrochemotherapy is a novel technique to enhance the delivery of chemotherapeutic drugs into tumor cells. In this procedure, electric pulses are delivered to cancerous cells, which induce membrane permeabilization, to facilitate the passage of cytotoxic drugs through the cell membrane. This study examines how electric fields interact with and polarize a system of cells. Specifically, we consider how cell density and organization impact on induced cell transmembrane potential due to an external electric field. First, in an infinite volume of spherical cells, we examined how cell packing density impacts on induced transmembrane potential. With high cell density, we found that maximum induced transmembrane potential is suppressed and that the transmembrane potential distribution is altered. Second, we considered how orientation of cell sheets and strands, relative to the applied field, affects induced transmembrane potential. Cells that are parallel to the field direction suppress induced transmembrane potential, and those that lie perpendicular to the applied field potentiate its effect. Generally, we found that both cell density and cell organization are very important in determining the induced transmembrane potential resulting from an applied electric field.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.