1,164
Views
25
CrossRef citations to date
0
Altmetric
Review Articles

HIF–prolyl hydroxylases and cardiovascular diseases

, , , , &
Pages 347-358 | Received 25 Nov 2011, Accepted 03 Mar 2012, Published online: 16 Mar 2012
 

Abstract

Prolyl hydroxylases belong to the family of iron- and 2-oxoglutamate-dependent dioxygenase enzyme. Several distinct prolyl hydroxylases have been identified. The hypoxia-inducible factor (HIF) prolyl hydroxylase termed prolyl hydroxylase domain (PHD) enzymes play an important role in oxygen regulation in the physiological network. There are three isoforms that have been identified: PHD1, PHD2 and PHD3. Deletion of PHD enzymes result in stabilization of HIFs and offers potential treatment options for many ischemic disorders such as peripheral arterial occlusive disease, myocardial infarction, and stroke. All three isoforms are oxygen sensors that regulate the stability of HIFs. The degradation of HIF-1α is regulated by hydroxylation of the 402/504 proline residue by PHDs. Under hypoxic conditions, lack of oxygen causes hydroxylation to cease HIF-1α stabilization and subsequent translocation to the nucleus where it heterodimerizes with the constitutively expressed β subunit. Binding of the HIF-heterodimer to specific DNA sequences, named hypoxia-responsive elements, triggers the transactivation of target genes. PHD regulation of HIF-1α-mediated cardioprotection has resulted in considerable interest in these molecules as potential therapeutic targets in cardiovascular and ischemic diseases. In recent years, attention has been directed towards identifying small molecule inhibitors of PHD. It is postulated that such inhibition might lead to a clinically useful strategy for protecting the myocardium against ischemia and reperfusion injury. Recently, it has been reported that the orally absorbed PHD inhibitor GSK360A can modulate HIF-1α signaling and protect the failing heart following myocardial infarction. Furthermore, PHD1 deletion has been found to have beneficial effects through an increase in tolerance to hypoxia of skeletal muscle by reprogramming basal metabolism. In the mouse liver, such deletion has resulted in protection against ischemia and reperfusion. As a result of these preliminary findings, PHDs is attracting increasing interest as potential therapeutic targets in a wide range of diseases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.