76
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Novel computational study on π-stacking to understand mechanistic interactions of Tryptanthrin analogues with DNA

, , , , &
Pages 73-79 | Received 16 Sep 2013, Accepted 22 Oct 2013, Published online: 21 Nov 2013
 

Abstract

Based on recently published initial experimental results on the intercalation of a class of broad spectrum antiparasitic compounds, we present a purely theoretical approach for determining if these compounds may preferentially intercalate with guanosine/cytosine (GC)-rich or adenosine/thymidine (TA)-rich regions of DNA. The predictive model presented herein is based upon utilization of density functional theory (DFT) to determine a priori how the best intercalator may energetically and sterically interact with each of the nucleoside base pairs. A potential new method using electrostatic potential maps (EPMs) to visually select the best poses is introduced and compared to the existing brute-force center of mass (COM) approach. The EPM and COM predictions are in agreement with each other, but the EPM method is potentially much more efficient. We report that 4-azatryptantrin, the best intercalator, is predicted to favor π-stacking with GC over that of TA by approximately 2–4 kcal/mol. This represents a significant difference if one takes into account the Boltzmann distribution at physiological temperature. This theoretical method will be utilized to guide future experimental studies on the elucidation of possible mechanism(s) for the action of these antiparasitic compounds at the molecular level.

Acknowledgements

The authors thank Derek Gagnon and Nathan Price for their individual contributions. We also acknowledge the National Science Foundation for their generous support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.