301
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells

, , , , &
Pages 388-395 | Received 19 Jan 2015, Accepted 20 Apr 2015, Published online: 18 May 2015
 

Abstract

Previous report of the vast effectiveness of opium derivatives in cancer therapy is leading us to see possible effects of these derivatives on cancer stem cells in order to find new agent for cancer therapy. In this study, cells were stained for CSC markers and sorted by magnetic beads. CSCs exhibit the characteristic CD44+/CD24−/low/ESA+ phenotype. Noscapine and papaverine (alkaloids) showed anti-proliferative activity on MCF-7 and MDA-MB-231 cell lines. It was observed that noscapine has more cytotoxic effect on CSC derived from both cell lines compared with their parental cells. Papaverine has more cytotoxic effect on MCF-7 CSCs in comparison with parental cells, while CSCs population of MDA-MB-231 is more resistant to papaverine compared with MDA-MB-231 cells. Noscapine enhances apoptosis in MDA-MB-231 CSCs more than parent cells, while in MCF-7 CSCs the apoptosis is less than parent cells. Our results show that papverine is less active in terms of apoptotic effect on CSCs in both cell lines. Moreover, noscapine arrests MCF-7 and MDA-MB-231 CSCs cell cycle at G2/M phase, while papverine arrests cell cycle at G0/G1 phase. It was suggested different mechanism for apoptotic cytotoxicity. The results of this study show possible specific effects of noscapine on these breast cell lines CSCs.

Acknowledgements

The authors are thankful from Iran National Science Foundation (INSF).

Declaration of interest

This study was supported by grant number 89-0-4-33-11858 from Deputy of Research, Tehran University of Medical Sciences.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.