8
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Gastrulation in the Sea Urchin, Strongylocentrotus purpuratus, Is Disrupted by the Small Laminin Peptides YIGSR and IKVAV

, &
Pages 163-177 | Received 22 Feb 1995, Published online: 11 Jul 2009
 

Abstract

Laminin is present on the apical and basolateral sides of epithelial cells of very early sea urchin blastulae. We investigated whether small laminin-peptides, known to have cell binding activities, alter the development of sea urchin embryos. The peptide YIGSR-NH2 (850 μM) and the peptide PA22-2 (5 μM), which contains the peptide sequence IKVAV (Tashiro et al., J. Biol. Chem. 264, 16174, 1989), typically blocked archenteron formation when added to the sea water soon after fertilization. At lower doses, the YIGSR peptide allowed invagination of the archenteron but blocked archenteron extension and differentiation and evagination of the feeding arms. The effect of YIGSR and PA22-2 peptides declined when added to progressively older stages until no effect was seen when added at the mesenchyme blastula stage (24 hours after fertilization). Control peptides GRGDS, YIGSE, and SHA22, a dodeca-peptide with a scrambled IKVAV sequence, had no effect on development. The YIGSK peptide containing a conserved amino acid modification had only a small effect on gastrulation. The results suggest that YIGSR and IKVAV peptides specifically disrupt cell/extracellular matrix interactions required for normal development of the archenteron and feeding arms. Our recent finding that YTGIR is at the cell binding site of the B1 chain of S. purpuratus laminin supports this conclusion. Evidently, laminin or other laminin-like molecules are among the many extracellular matrix components needed for the invagination and extension of the archenteron during the gastrulation movements of these embryos.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.