57
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Fibronectin Isoform Distribution in the Mouse II. Differential Distribution of the Alternatively Spliced EIIIB, EIIIA, and V Segments in the Adult Mouse

, &
Pages 127-148 | Received 19 Jan 1996, Accepted 08 Mar 1996, Published online: 11 Jul 2009
 

Abstract

The alternatively spliced EIIIB, EIIIA. and V segments of fibronectin (FN) show widespread codistribution in the mouse embryo, suggesting that EIIIB+, EIIIA+, and V+ isoforms serve to facilitate morphogenesis and organogenesis (Peters, JH, and Hynes, RO, 1996, this issue). To gain further clues to functions of these segments, we have used segment-specific anti-FN antibodies to perform immunofluorescence microscopy on tissue sections obtained from mice aged 9 to 15 weeks. Staining for each of the three spliced segments, relative to that for the total FN pool, was reduced in the adult as compared with the embryo. Anti-V antibodies produced patterns which were most similar to those obtained with anti-total FN antibodies, localizing to basement membranes, connective tissues subjacent to epithelia, walls of blood vessels, and cartilage. Anti-EIIIA antibodies produced the next most widespread pattern. which included prominent staining of the walls of blood vessels of all sizes, the lung inter-stitium. and smooth muscle associated with the gastrointestinal (GI), genitourinary (GU), and respiratory tracts. Although anti-EIIIB antibodies produced the faintest and most restricted pattern of staining, EIIIB+ FN could be detected in the walls of some smaller blood vessels, smooth muscle of the GI, GU, and respiratory tracts, as well as within cartilaginous structures, and eye. There were quantitative and/or qualitative differences in the staining patterns produced by the three segment-specific antibodies in a variety of tissues, including liver, cartilage, synovium, cornea, muscle, peripheral nerve, and lymph node. These findings suggest that each of the spliced segments of the FN molecule may occupy unique physical or functional positions within the extracellular matrix of the adult mouse.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.