21
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Adhesion Complexes Formed by OVCAR-4 Cells on Laminin 1 Differ from Those Observed on Fibronectin

, , &
Pages 527-539 | Received 11 Jan 1996, Published online: 11 Jul 2009
 

Abstract

Cell adhesion to laminin 1 or to fibronectin is mediated by distinct sets of integrins and is differentially regulated by protein kinase C (PKC). It suggests that upon integrin ligation to laminin 1 or to fibronectin different intracellular signaling pathways could be activated. We have therefore investigated the formation of signaling complexes induced during cell adhesion to laminin 1 or to fibronectin. Following cell adhesion to laminin 1 the re-arrangement of the cytoskeleton was slower than that observed on fibronectin and it was activated by treating the cells with H-7, an inhibitor of PKC. Conversely, treatment of laminin-adhering cells with a PKC activator resulted in a rapid disorganization of the actin cytoskeleton while a similar treatment had no effect on fibronectin-adhering cells. These results suggested that the structural organization of the adhesion complexes might be substrate-specific and might correspond to a different arrangement of cytoskeletal and/or cytoplasmic proteins. Reflection interference contrast microscopy (RICM) images revealed that cell-substratum contacts formed on laminin 1 were not well differentiated in contrast to those developed on fibronectin. However, immunofluorescence staining revealed a similar organisation of actin microfilaments, talin and phosphotyrosyl-containing proteins on both substrates. In contrast, differences were observed for vinculin distribution within cells spread on fibronectin or on laminin I. Following cell adhesion to fibronectin most of the vinculin appeared as thick patches at the tips of the actin stress fibers while in laminin-adhering cells vinculin was recruited into thin streaks localized at the end of only some actin stress fibers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.