2,841
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Effects of thymol and carvacrol on T-helper cell subset cytokines and their main transcription factors in ovalbumin-immunized mice

&
Pages 729-737 | Received 20 Jan 2016, Accepted 29 Mar 2016, Published online: 14 Jul 2016
 

Abstract

Thymol and carvacrol, two main components of thyme, have several valuable effects on the immune system. This study aims to evaluate the effects of these components on T-helper (TH) cell responses and their subsets in mice immunized with ovalbumin. The effects of these components on: a specific in vivo immune response were evaluated by assessing changes in delayed-type hypersensitivity (DTH); ex vivo splenocyte proliferative responses were evaluated using a BrdU assay gene expression of cytokines and key transcription factors involved in T-cells subset differentiation among the mouse splenocytes were assessed using real-time polymerase chain reaction (PCR); and splenocyte cytokine formation (ex vivo) and levels of the cytokines in mouse sera were measured by ELISA. Mice treated with thymol or carvacrol had reduced DTH responses (26% and 50%, respectively) compared with control mice. Thymol and carvacrol each diminished splenocyte proliferation to nearly 65–72% of control levels (p < 0.01). These agents also led to decreased TH1 [interleukin (IL)-2, interferon (IFN)-γ)], TH2 (IL-4) and TH17 (IL-17A) levels in the splenocyte cultures and in the sera of mice but increased levels of IL-10 and transforming growth factor (TGF)-β. Treated immunized mice showed significantly reduced T-box 21 (T-bet) expression from 3.8 [± 0.3]-fold in untreated ovalbumin-immunized mice to 0.9 [± 0.4]-(thymol) and 0.8 [± 0.2]-fold (carvacrol) (p < 0.01). GATA binding protein 3 (GATA-3) expression declined from 3.4 [± 0.4]- to 0.5 [± 0.3]-fold (thymol) and 0.6 [± 0.4]-fold (carvacrol), whereas RORγc decreased from 13.4 [± 1.6]- to 1.5 [± 0.6]-fold (thymol) and 0.8 [± 0.4]-fold (carvacrol) (p < 0.001). As carvacrol and thymol each suppressed the antigen-specific immune response by reducing TH cell-related cytokines\specific transcription factors, this indicated their potential to modulate destructive immune responses attributed to T-cells over-activation.

Acknowledgements

This study was extracted from the thesis written by one of the authors N. Gholijani.

Disclosure statement

The authors declare no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding information

Shiraz University of Medical Sciences (Grant #6297).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.