24
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Measurement of Serum Isopropanol and the Acetone Metabolite by Proton Nuclear Magnetic Resonance: Application to Pharmacokinetic Evaluation in a Simulated Overdose Model

, , , , &
Pages 141-149 | Published online: 25 Sep 2008
 

Abstract

The purpose of this investigation was to 1) compare the performance of proton nuclear magnetic resonance spectroscopy to gas chromatography head-space analysis in the measurement of serum isopropanol and its metabolite, acetone, obtained during a simulated overdose, and 2) compare pharmacokinetic parameters obtained using the two analytical techniques. Three healthy volunteers ingested 0.6 mL/kg of 70 % isopropanol and blood samples were obtained at baseline, 0.16, 0.33, 0.66, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, and 24.0 hours post-ingestion. Resulting sera were analyzed by gas chromatography head-space analysis and proton nuclear magnetic resonance spectroscopy for determination of isopropanol and acetone concentrations. A correlation between concentrations quantitated by gas chromatography head-space analysis versus proton nuclear magnetic resonance spectroscopy was determined using linear regression. Pharmacokinetic disposition parameters were determined from serum concentration-time data and compared using analysis of variance. For isopropanol, the linear regression equation which describes the relationship between gas chromatography head-space analysis and proton nuclear magnetic resonance spectroscopy was y = 1.041x − 2.180 (r2 = 0.995, p < 0.0001); for acetone, y = 1.022x − 0.946 (r2 = 0.984, p < 0.0001). Pharmacokinetic disposition parameters derived from the two analytical methods were comparable. Proton nuclear magnetic resonance spectroscopy can be used to rapidly quantitate serum isopropanol and acetone concentrations in the same sample when gas chromatography head-space analysis is unavailable. Also, proton nuclear magnetic resonance spectroscopy can be used to follow serial serum concentrations during an ingestion for the purpose of pharmacokinetic analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.