636
Views
63
CrossRef citations to date
0
Altmetric
Research Article

Rationale of genotoxicity testing of nanomaterials: Regulatory requirements and appropriateness of available OECD test guidelines

&
Pages 409-413 | Received 26 Jan 2010, Accepted 07 Apr 2010, Published online: 14 May 2010
 

Abstract

The development of an environmental health and safety risk management system for nanoscale particle-types requires a base set of hazard data. Accurate determination of health and environmental risks of nanomaterials is a function of the integration of hazard and exposure datasets. Recently, a nanoparticle risk assessment strategy was promulgated and the components are described in a document entitled “Nanorisk framework” (www.nanoriskframework.com). A major component of the hazard evaluation includes a proposed minimum base set of toxicity studies. Included in the suggested studies were substantial particle characterization, a variety of acute hazard and environmental tests, concomitant with screening-type genotoxicity studies. The implementation of well-accepted genotoxicity assays for testing nanomaterials remains a controversial issue. This is because many of these genotoxicity tests were designed for screening general macroparticle chemicals and might not be suitable for the screening of nanomaterials (even of the same compositional material). Furthermore, no nanoparticle-type positive controls have been established or universally accepted for these tests. Although it is the comparative results of the test material vs. the negative or vehicle control that forms the basis for interpreting the results and potency of test materials in genetic toxicology assays, the lack of a nanoparticle-type positive control questions the suitability of the tests to identify nanomaterials with genotoxic properties. It is also not possible to establish historical positive control ranges that would confirm the sensitivity of the tests. Although several genetic toxicology tests have been validated for chemicals according to the Organisation for Economic Co-operation and Development (OECD) test guidelines, the relevance of these assays for nanoparticulate materials remains to be determined. In an attempt to remedy this issue, the OECD has established current projects designed to evaluate the relevance and reproducibility of safety hazard tests for representative nanomaterials, including genotoxicity assays (i.e., Steering Group 3 – Safety Testing of Representative Nanomaterials). In this article, we discuss our past approaches and experience in conducting genotoxicity assays (1) for a newly developed ultrafine TiO2 particle-type; and (2) in a recent inhalation study, evaluating micronucleus formation in rat erythrocytes following exposures to engineered amorphous nanosilica particles. It seems clear that the development of standardized approaches will be necessary in order to determine whether exposures to specific nanoparticle-types are associated with genotoxic events. The appropriateness of available genotoxicity test systems for nanomaterials requires confirmation and standardization. Accordingly, it seems reasonable to conclude that any specific regulatory testing requirements for nanoparticles would be premature at this time.

Declaration of interest: The DuPont Company makes and sells ultrafine TiO2 particles. The authors would like to report no conflict of interests. The authors are entirely responsible for the content and writing of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.