903
Views
130
CrossRef citations to date
0
Altmetric
Research Article

Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles

, , , , , , , , , , & show all
Pages 713-723 | Received 29 Dec 2010, Accepted 05 Jul 2011, Published online: 28 Jul 2011
 

Abstract

The influence of size, surface charge and surface functionality of poly(amido amine) dendrimers and silica nanoparticles (SNPs) on their toxicity was studied in immunocompetent mice. After systematic characterization of nanoparticles, they were administered to CD-1 (caesarean derived-1) mice to evaluate acute toxicity. A distinct trend in nanotoxicity based on surface charge and functional group was observed with dendrimers regardless of their size. Amine-terminated dendrimers were fatal at doses >10 mg/kg causing haematological complications such as disseminated intravascular coagulation-like manifestations whereas carboxyl- and hydroxyl-terminated dendrimers of similar sizes were tolerated at 50-fold higher doses. In contrast, larger SNPs were less tolerated than smaller SNPs irrespective of their surface functionality. These findings have important implications in the use of these nanoparticles for various biomedical applications.

Acknowledgements

Financial support was provided by NIH Grants (R01DE019050 and R01EB07470) and the Utah Science Technology and Research (USTAR) initiative.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.