721
Views
125
CrossRef citations to date
0
Altmetric
Original Article

An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures

, , , , , , , , , & show all
Pages 1338-1350 | Received 20 Jul 2012, Accepted 02 Oct 2012, Published online: 08 Nov 2012
 

Abstract

Nanoscale CeO2 is increasingly used for industrial and commercial applications, including catalysis, UV-shielding and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterisation of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytotoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. By contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, the authors present an integrative study evaluating the toxicity of nanoscale CeO2 both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO2 encapsulation coating as a means of mitigating CeO2 toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO2-exposed rats. Moreover, exposure to SiO2-coated CeO2 did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO2-encapsualtion concept.

Acknowledgements

This study was supported by NIEHS (Grant # ES00000002) and NSF (ID# 1235806). The authors also gratefully acknowledge the generous financial support of BASF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.