490
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos

, , , , &
Pages 81-91 | Received 13 Jul 2013, Accepted 30 Jan 2014, Published online: 14 Mar 2014
 

Abstract

The toxicity of silver nanoparticles (AgNP) to aquatic organisms, including zebrafish (Danio rerio), has been demonstrated, but differing opinions exist on the contribution of the physical properties of the particles themselves and the free dissolved silver ions (Ag+) to the observed effects. High concentrations of chloride ions (Cl) in the routinely used exposure media can cause precipitation of Ag+ as AgCl, as well as complexation of silver in diverse soluble chlorocomplexes, thus masking the contribution of dissolved silver to AgNP toxicity. In the present study, we formulated a zebrafish exposure medium with a low chloride content and exposed zebrafish embryos to AgNO3 or carbonate-coated AgNP. The severity of toxicity caused by both silver forms depended on the time of exposure start, with younger embryos being most sensitive. Toxicity caused by both AgNO3 and AgNP was of the same order of magnitude when compared based on the total dissolved silver concentration and could be prevented by addition of the Ag+ chelator cysteine. Further, we have analyzed the data from several previous studies to evaluate the influence of interactions between Ag+ and Cl on silver toxicity to zebrafish embryos. Our analysis demonstrates that the acute toxicity of AgNP to zebrafish embryos is largely mediated by Ag+. The influence of particle size and coating can at least partially be explained by the differences in Ag+ dissolution. High Cl levels in the exposure medium indeed have a pivotal influence on the resulting toxicity of AgNP, appearing to significantly attenuate toxicity in several studies. This consideration should influence the choice of exposure medium to be used when evaluating and comparing AgNP toxicity.

Declaration of interest

The authors declare no conflict of interest. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. T.D. was financially supported by the EU FP7 through project FPVII-266712 (ModNanoTox: Modelling nanoparticle toxicity: principles, methods, novel approaches).

Supplementary material available online

Supplementary Table 1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.