609
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Tracing engineered nanomaterials in biological tissues using coherent anti-Stokes Raman scattering (CARS) microscopy – A critical review

, , &
Pages 928-939 | Received 22 Jul 2014, Accepted 20 Nov 2014, Published online: 11 May 2015
 

Abstract

Nanomaterials (NMs) are used in an extremely diverse range of products and are increasingly entering the environment, driving a need to better understand their potential health effects in both humans and wildlife. A major challenge in nanoparticle (eco)toxicology is the ability to localise NMs post exposure, to enable more targeted biological effects analyses. A range of imaging techniques have been applied to do so, but they are limited, requiring either extensive processing of the material, staining or use of high intensity illumination that can lead to photo damage and/or have limited tissue penetration. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free imaging technique, providing contrast based on the intrinsic molecular vibrations of a specimen, circumventing the need for chemical perturbation by exogenous labels. CARS uses near infra-red excitation wavelengths which allow microscopy at depths of several hundred microns in intact tissues and minimises photo-damage to live and delicate samples. Here we provide an overview of the CARS process and present a series of illustrative examples demonstrating its application for detecting NMs within biological tissues, ranging from isolated cells to whole organisms and including materials spanning metals to polymers. We highlight the advantages of this technique which include chemically selective live imaging and substantial depth penetration, but we also discuss its limitations when applied to nanotoxicology, which most notably include the lack of resolution for studies on single nanoparticles.

Acknowledgements

The authors thank J. Shears and G. Paull and for technical support and N. Garrett and J. Mansfield for imaging expertise.

Declaration of interest

The authors declare no conflict of interest.

This work was supported by the Natural Environmental Research Council (NE/H013172/1) and EU FP7 Large Collaborative Project NanoMILE (Grant Agreement No.310451) to CRT, and from the EPSRC (grant numbers EP/G028362/1 and EP/G061564/1) to JM.

Supplementary material available online

Supplementary Videos

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.