477
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes

, &
Pages 332-342 | Received 16 Dec 2014, Accepted 19 Jun 2015, Published online: 18 Aug 2015
 

Abstract

Iron oxide nanoparticles (IONPs) are used for various biomedical and neurobiological applications. Thus, detailed knowledge on the accumulation and toxic potential of IONPs for the different types of brain cells is highly warranted. Literature data suggest that microglial cells are more vulnerable towards IONP exposure than other types of brain cells. To investigate the mechanisms involved in IONP-induced microglial toxicity, we applied fluorescent dimercaptosuccinate-coated IONPs to primary cultures of microglial cells. Exposure to IONPs for 6 h caused a strong concentration-dependent increase in the microglial iron content which was accompanied by a substantial generation of reactive oxygen species (ROS) and by cell toxicity. In contrast, hardly any ROS staining and no loss in cell viability were observed for cultured primary astrocytes and neurons although these cultures accumulated similar specific amounts of IONPs than microglia. Co-localization studies with lysotracker revealed that after 6 h of incubation in microglial cells, but not in astrocytes and neurons, most IONP fluorescence was localized in lysosomes. ROS formation and toxicity in IONP-treated microglial cultures were prevented by neutralizing lysosomal pH by the application of NH4Cl or Bafilomycin A1 and by the presence of the iron chelator 2,2′-bipyridyl. These data demonstrate that rapid iron liberation from IONPs at acidic pH and iron-catalyzed ROS generation are involved in the IONP-induced toxicity of microglia and suggest that the relative resistance of astrocytes and neurons against acute IONP toxicity is a consequence of a slow mobilization of iron from IONPs in the lysosomal degradation pathway.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Supplementary material available online

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.